Phil Anderson presented an experimental/theoretical talk entitled "Theory of the Nernst Effect in the Cuprates: Is not Black Hole Physics". Here Phil gave an overview of the anomalous behavior of the Nernst effect above Tc in the so-called vortex liquid state. First and foremost was his phase diagram (temperature versus hole doping) which contained an additional phase line, concave in form, above the usual superconducting Tc - dome. This new phase represents the vortex liquid where vortices form due to the charge pairing and a diamagnetic response is found. The pseudogap appears above these domes with its monotonic decreasing structure from the antiferromagnetic region to an intersection with the supoerconducting dome.In a superconductor the Nernst effect tracks the vortex motion due to a temperature gradient and from the second Josephson equation a transverse voltage develops as a function of the perpendicular applied magnetic field, i.e., a phase slip voltage. In a type 2 superconductor a large Nernst signal results below Tc up Bc2. Now for the generic high Tc superconductors the Nernst signal remains far above Tc and according to the physical model it is proportional to the vortex velocity. Phil's theory enables one to relate the Nernst and Ettingshauser coefficients to the order parameter of the vortex fluid phase, i.e., the energy gap of preformed pairs which now appears as a distribution of gap sizes. Since phase coherence is broken the material in not in a conventional superconducting state.Phil showed that the distribution of energy gaps in the vortex liquid phase is related to the Nernst coefficient minus the field derivative of the Nernst signal. Thus one can now determine the distribution of gap sizes and the probability distribution of order parameters. Note that the pseudogap, as usually determined from NMR, ARPES, optical conductivity, etc., is distinct from the vortex liquid phase. And for certain materials there seems to be no correlation between the pseudogap temperature and the onset of the Nernst signal. One needs further experimental studies to map out the the vortex liquid phase boundary and to fully establish its properties in a variety of high Tc materials.
Physicists meet at the Aspen Center for Physics, August 2007 to discuss current developments in superconductivity research. This site hosts discussion and ideas connected with this workshop. Most weeks will involve a Tuesday morning presentation of recent experimental work, and a Thursday morning blackboard session for more free-form discussion. We encourage comment on the entries of this blog.
Thursday, August 23, 2007
Phil Anderson: Nernst Effect in the Cuprates
Phil Anderson presented an experimental/theoretical talk entitled "Theory of the Nernst Effect in the Cuprates: Is not Black Hole Physics". Here Phil gave an overview of the anomalous behavior of the Nernst effect above Tc in the so-called vortex liquid state. First and foremost was his phase diagram (temperature versus hole doping) which contained an additional phase line, concave in form, above the usual superconducting Tc - dome. This new phase represents the vortex liquid where vortices form due to the charge pairing and a diamagnetic response is found. The pseudogap appears above these domes with its monotonic decreasing structure from the antiferromagnetic region to an intersection with the supoerconducting dome.In a superconductor the Nernst effect tracks the vortex motion due to a temperature gradient and from the second Josephson equation a transverse voltage develops as a function of the perpendicular applied magnetic field, i.e., a phase slip voltage. In a type 2 superconductor a large Nernst signal results below Tc up Bc2. Now for the generic high Tc superconductors the Nernst signal remains far above Tc and according to the physical model it is proportional to the vortex velocity. Phil's theory enables one to relate the Nernst and Ettingshauser coefficients to the order parameter of the vortex fluid phase, i.e., the energy gap of preformed pairs which now appears as a distribution of gap sizes. Since phase coherence is broken the material in not in a conventional superconducting state.Phil showed that the distribution of energy gaps in the vortex liquid phase is related to the Nernst coefficient minus the field derivative of the Nernst signal. Thus one can now determine the distribution of gap sizes and the probability distribution of order parameters. Note that the pseudogap, as usually determined from NMR, ARPES, optical conductivity, etc., is distinct from the vortex liquid phase. And for certain materials there seems to be no correlation between the pseudogap temperature and the onset of the Nernst signal. One needs further experimental studies to map out the the vortex liquid phase boundary and to fully establish its properties in a variety of high Tc materials.
Yazdani [Nature, vol. 447, 569 (2007)] had shown by spatial STM measurements, a T_{p,max) line in the phase diagram which is similar to the Nernst line (a dome similar to that of T_c, but much above it).
ReplyDeleteIs this the same line that Phil is talking about?
Gad Koren,
Physics Dept., Technion, Israel
I had never heard about vortex liquid state, I've read a lot of scientists magazines so never something like this, I'd like to know more about his work because he says it isn't Black Hole Physics.
ReplyDeleteThanks for sharing this info because is very good and i like to post like this.
ReplyDeleteThanks for sharing. Always interesting to hear peoples opinion on certain topics you already had an opinion about.
ReplyDeleteI believe everybody should browse on it.
ReplyDeleteThanks for taking the time to discuss this, but I am firmly convinced of this and love to learn more about the subject. If possible, acquire knowledge, would you update your blog with more information? It is very helpful to me
ReplyDeleteThank yoou for writing this
ReplyDelete